
bravado

Nov 11, 2019

Contents

1 Quickstart 3

2 Configuration 7

3 Making requests with bravado 11

4 Advanced Usage 13

5 Testing code that uses bravado 19

6 API reference 23

7 Changelog 25

8 Indices and tables 33

i

ii

bravado

Bravado is a python client library for Swagger 2.0 services.

More information on Swagger can be found on the Swagger website

It aims to be a complete replacement to swagger codegen.

Features include:

• Dynamically generated client - no code generation needed!

• Synchronous and Asynchronous http clients out of the box.

• Strict validations to verify that your Swagger Schema is v2.0 compatible.

• HTTP request and response validation against your Swagger Schema.

• Swagger models as Python types (no need to deal with JSON).

• REPL friendly navigation of your Swagger schema with docstrings for Resources, Operations and Models.

• Ingestion of your Swagger schema via http or a local file path.

Contents:

Contents 1

http://swagger.io/
https://github.com/wordnik/swagger-codegen
http://docs.python-requests.org/en/latest/
https://github.com/Yelp/fido
https://github.com/wordnik/swagger-spec/blob/master/versions/2.0.md/

bravado

2 Contents

CHAPTER 1

Quickstart

1.1 Usage

Install the latest stable version from PyPi:

$ pip install --upgrade bravado

1.2 Your first Hello World! (or Hello Pet)

Here is a simple example to try from a REPL (like IPython):

from bravado.client import SwaggerClient

client = SwaggerClient.from_url("http://petstore.swagger.io/v2/swagger.json")
pet = client.pet.getPetById(petId=42).response().result

If you were lucky, and pet Id with 42 was present, you will get back a result. It will be a dynamically created
instance of bravado.model.Pet with attributes category, etc. You can even try pet.category.id or
pet.tags[0].

Sample Response:

Pet(category=Category(id=0L, name=u''), status=u'', name=u'', tags=[Tag(id=0L, name=u'
→˓')], photoUrls=[u''], id=2)

If you got a 404, try some other petId.

3

bravado

1.3 Lets try a POST call

Here we will demonstrate how bravado hides all the JSON handling from the user, and makes the code more
Pythonic.

Pet = client.get_model('Pet')
Category = client.get_model('Category')
pet = Pet(id=42, name="tommy", category=Category(id=24))
client.pet.addPet(body=pet).response().result

1.4 Time to get Twisted! (Asynchronous client)

bravado provides an out of the box asynchronous http client with an optional timeout parameter.

Your first Hello World! (or Hello Pet) above can be rewritten to use the asynchronous Fido client like so:

from bravado.client import SwaggerClient
from bravado.fido_client import FidoClient

client = SwaggerClient.from_url(
'http://petstore.swagger.io/v2/swagger.json',
FidoClient()

)

result = client.pet.getPetById(petId=42).result(timeout=4)

Note: timeout parameter here is the timeout (in seconds) the call will block waiting for the complete response.
The default timeout is to wait indefinitely.

Note: To use Fido client you should install bravado with fido extra via pip install bravado[fido].

1.5 This is too fancy for me! I want a simple dict response!

bravado has taken care of that as well. Configure the client to not use models.

from bravado.client import SwaggerClient

client = SwaggerClient.from_url(
'http://petstore.swagger.io/v2/swagger.json',
config={'use_models': False}

)

result = client.pet.getPetById(petId=42).result(timeout=4)

result will look something like:

{
'category': {

(continues on next page)

4 Chapter 1. Quickstart

https://github.com/Yelp/fido

bravado

(continued from previous page)

'id': 0L,
'name': u''

},
'id': 2,
'name': u'',
'photoUrls': [u''],
'status': u'',
'tags': [

{'id': 0L, 'name': u''}
]

}

1.5. This is too fancy for me! I want a simple dict response! 5

bravado

6 Chapter 1. Quickstart

CHAPTER 2

Configuration

2.1 Client Configuration

You can configure certain behaviours when creating a SwaggerClient.

bravado and bravado-core use the same config dict. The full documentation for bravado-core config keys is available
too.

from bravado.client import SwaggerClient, SwaggerFormat

my_super_duper_format = SwaggerFormat(...)

config = {
=== bravado config ===

What class to use for response metadata
'response_metadata_class': 'bravado.response.BravadoResponseMetadata',

Do not use fallback results even if they're provided
'disable_fallback_results': False,

DEPRECATED: Determines what is returned by HttpFuture.result().
Please use HttpFuture.response() for accessing the http response.
'also_return_response': False,

=== bravado-core config ====

Validate incoming responses
'validate_responses': True,

Validate outgoing requests
'validate_requests': True,

Validate the swagger spec

(continues on next page)

7

http://bravado-core.readthedocs.org/en/latest/config.html

bravado

(continued from previous page)

'validate_swagger_spec': True,

Use models (Python classes) instead of dicts for #/definitions/{models}
'use_models': True,

List of user-defined formats
'formats': [my_super_duper_format],

}

client = SwaggerClient.from_url(..., config=config)

Config key Type Description
response_metadata_class string

The Metadata class to use; see
Custom response metadata for
details.

Default: bravado.response.
BravadoResponseMetadata

disable_fallback_results boolean

Whether to disable returning
fallback results, even if
they’re provided as an argument to
to HttpFuture.response().

Default: False
also_return_response boolean

Determines what is returned by the
service call.
Specifically, the return value of
HttpFuture.result().
When False, the swagger result is
returned.
When True, the tuple (swagger
result, http response)

is returned. Has no effect on the
return value of
HttpFuture.response().
See Getting access to the HTTP
response.

Default: False

2.1.1 Customizing the HTTP client

bravado’s default HTTP client uses the excellent requests library to make HTTP calls. If you’d like to cus-
tomize its behavior, create a bravado.requests_client.RequestsClient instance yourself and pass it
as http_client argument to SwaggerClient.from_url() or SwaggerClient.from_spec().

8 Chapter 2. Configuration

http://www.python-requests.org/

bravado

Currently, you can customize SSL/TLS behavior through the arguments ssl_verify and ssl_cert. They’re
identical to the verify and cert options of the requests library; please check their documentation for usage instruc-
tions. Note that bravado honors the REQUESTS_CA_BUNDLE environment variable as well.

Also you can specify custom future adapter and response adapter classes through the future_adapter_class
and response_adapter_class arguments respectively.

2.1.2 Using a different HTTP client

You can use other HTTP clients with bravado; the fido client ships with bravado (bravado.fido_client.
FidoClient). Currently the fido client doesn’t support customizing SSL/TLS behavior. But the future adapter
and response adapter classes could be specified in the same manner as for bravado.requests_client.
RequestsClient - through the future_adapter_class and response_adapter_class arguments re-
spectively.

Another well-supported option is bravado_asyncio, which requires Python 3.5+. It supports the same ssl options as
the default requests client.

2.2 Per-request Configuration

Configuration can also be applied on a per-request basis by passing in _request_options to the service call.

client = SwaggerClient.from_url(...)
request_options = { ... }
client.pet.getPetById(petId=42, _request_options=request_options).response().result

2.2. Per-request Configuration 9

http://www.python-requests.org/en/master/user/advanced/#ssl-cert-verification
https://github.com/sjaensch/bravado-asyncio

bravado

Config key Type Default Description
connect_timeout float N/A

TCP connect timeout in
seconds. This is passed
along to the
http_client when making
a service call.

headers dict N/A

Dict of http headers to to
send with the outgoing
request.

response_callbacks list of callables []

List of callables that are
invoked after the
incoming
response has been
validated and
unmarshalled but before
being
returned to the calling
client. This is useful for
client
decorators that would like
to hook into the
post-receive
event. The callables are
executed in the order they
appear
in the list.
Two parameters are
passed to each callable:
-
incoming_response
of type
bravado_core.
response.
IncomingResponse

- operation of type
bravado_core.
operation.
Operation

timeout float N/A

TCP idle timeout in
seconds. This is passed
along to the
http_client when making
a service call.

use_msgpack boolean False

If a msgpack serialization
is desired for the
response. This
will add a Accept:
application/msgpack
header to the request.

force_fallback_result boolean False

Whether a potentially
provided fallback result
should always
be returned, regardless of
whether the request
succeeded.
Mainly useful for manual
and automated testing.

10 Chapter 2. Configuration

CHAPTER 3

Making requests with bravado

When you call SwaggerClient.from_url() or SwaggerClient.from_spec(), Bravado takes a Swag-
ger (OpenAPI) 2.0 spec and returns a SwaggerClient instance that you can use to make calls to the ser-
vice described in the spec. You make calls by doing Python method calls in the form of client.resource.
operation(operation_params). Use dir(client) to see all available resources.

3.1 Resources and operations

Resources are generated for each tag that exists in your Swagger spec. If an operation has no tags then the left-most
element of its path is taken as resource name. So in the case of an operation with the path /pet/find, pet will be
the resource.

The operation name will be the (sanitized) operationId value from the Swagger spec. If there is no operationId, it will
be generated. We highly recommend providing operation IDs for all operations. Use dir(client.resource) to
see a list of all available operations.

The operation method expects keyword arguments that have the same (sanitized) names as in the Swagger spec. Use
corresponding Python types for the values - if the Swagger spec says a parameter is of type boolean, provide it as a
Python bool.

3.2 Futures and responses

The return value of the operation method is a HttpFuture. To access the response, call HttpFuture.
response(). This call will block, i.e. it will wait until the response is received or the timeout you specified is
reached.

If the request succeeded and the server returned a HTTP status code between 100 and 299, the return value of
HttpFuture.response() will be a BravadoResponse instance. You may access the Swagger result of your
call through BravadoResponse.result.

11

bravado

If the server sent a response with a HTTP code of 300 or higher, by default a subclass of HTTPError will be raised
when you call HttpFuture.response(). The exception gives you access to the Swagger result (HTTPError.
swagger_result) as well as the HTTP response object (HTTPError.response).

3.3 Response metadata

BravadoResponse.metadata is an instance of BravadoResponseMetadata that provides you with access
to the HTTP response including headers and HTTP status code, request timings and whether a fallback result was used
(see Working with fallback results).

You’re able to provide your own implementation of BravadoResponseMetadata; see Custom response metadata
for details.

3.4 Sanitizing names

Not all characters that the Swagger spec allows for names are valid Python identifiers. In particular, spaces and the -
character can be troublesome. bravado sanitizes resource, operation and parameter names according to these rules:

• Any character that is not a letter or number is converted to an underscore (_)

• Collapse multiple consecutive underscores to one

• Remove leading and trailing underscores

• Remove leading numbers

12 Chapter 3. Making requests with bravado

CHAPTER 4

Advanced Usage

4.1 Validations

bravado validates the schema against the Swagger 2.0 Spec. Validations are also done on the requests and the
responses.

Validation example:

pet = Pet(id="I should be integer :(", name="tommy")
client.pet.addPet(body=pet).response().result

will result in an error like so:

TypeError: id's value: 'I should be integer :(' should be in types (<type 'long'>,
→˓<type 'int'>)

Note: If you’d like to disable validation of outgoing requests, you can set validate_requests to False in the
config passed to SwaggerClient.from_url(...).

The same holds true for incoming responses with the validate_responses config option.

4.2 Adding Request Headers

bravado allows you to pass request headers along with any request.

Pet = client.get_model('Pet')
Category = client.get_model('Category')
pet = Pet(id=42, name="tommy", category=Category(id=24))
swagger_client.pet.addPet(

body=pet,

(continues on next page)

13

bravado

(continued from previous page)

_request_options={"headers": {"foo": "bar"}},
).response().result

4.3 Docstrings

bravado provides docstrings to operations and models to quickly get the parameter and response types. Due to
an implementation limitation, an operation’s docstring looks like a class docstring instead of a function docstring.
However, the most useful information about parameters and return type is present in the Docstring section.

Note: The help built-in does not work as expected for docstrings. Use the ? method instead.

>> petstore.pet.getPetById?

Type: CallableOperation
String Form:<bravado.client.CallableOperation object at 0x241b5d0>
File: /some/dir/bravado/bravado/client.py
Definition: c.pet.getPetById(self, **op_kwargs)
Docstring:
[GET] Find pet by ID

Returns a single pet

:param petId: ID of pet to return
:type petId: integer
:returns: 200: successful operation
:rtype: object
:returns: 400: Invalid ID supplied
:returns: 404: Pet not found
Constructor Docstring::type operation: :class:`bravado_core.operation.Operation`
Call def: c.pet.getPetById(self, **op_kwargs)
Call docstring:
Invoke the actual HTTP request and return a future that encapsulates
the HTTP response.

:rtype: :class:`bravado.http_future.HTTPFuture`

Docstrings for models can be retrieved as expected:

>> pet_model = petstore.get_model('Pet')
>> pet_model?

Type: type
String Form:<class 'bravado_core.model.Pet'>
File: /some/dir/bravado_core/model.py
Docstring:
Attributes:

category: Category
id: integer
name: string
photoUrls: list of string
status: string - pet status in the store

(continues on next page)

14 Chapter 4. Advanced Usage

bravado

(continued from previous page)

tags: list of Tag
Constructor information:
Definition:pet_type(self, **kwargs)

4.4 Default Values

bravado uses the default values from the spec if the value is not provided in the request.

In the Pet Store example, operation findPetsByStatus has a default of available. That means, bravado
will plug that value in if no value is provided for the parameter.

client.pet.findPetByStatus()

4.5 Loading swagger.json by file path

bravado also accepts swagger.json from a file path. Like so:

client = SwaggerClient.from_url('file:///some/path/swagger.json')

Alternatively, you can also use the load_file helper method.

from bravado.swagger_model import load_file

client = SwaggerClient.from_spec(load_file('/path/to/swagger.json'))

4.6 Getting access to the HTTP response

The default behavior for a service call is to return the swagger result like so:

pet = client.pet.getPetById(petId=42).response().result
print pet.name

However, there are times when it is necessary to have access to the actual HTTP response so that the HTTP headers
or HTTP status code can be used. Simply save the response object (which is a BravadoResponse) and use its
incoming_response attribute to access the incoming response:

petstore = SwaggerClient.from_url(
'http://petstore.swagger.io/v2/swagger.json',
config={'also_return_response': True},

)
pet_response = petstore.pet.getPetById(petId=42).response()
http_response = pet_response.incoming_response
assert isinstance(http_response, bravado_core.response.IncomingResponse)
print http_response.headers
print http_response.status_code
print pet.name

4.4. Default Values 15

http://petstore.swagger.io/

bravado

4.7 Working with fallback results

By default, if the server returns an error or doesn’t respond in time, you have to catch and handle the resulting
exception accordingly. A simpler way would be to use the support for fallback results provided by HttpFuture.
response().

HttpFuture.response() takes an optional argument fallback_resultwhich is the fallback Swagger result
to return in case of errors:

petstore = SwaggerClient.from_url('http://petstore.swagger.io/v2/swagger.json')
response = petstore.pet.findPetsByStatus(status=['available']).response(

timeout=0.5,
fallback_result=[],

)

This code will return an empty list in case the server doesn’t respond quickly enough (or it responded quickly enough,
but returned an error).

4.7.1 Handling error types differently

Sometimes, you might want to treat timeout errors differently from server errors. To do this you may pass in
a callable as fallback_result argument. The callable takes one mandatory argument: the exception that
would have been raised normally. This allows you to return different results based on the type of error (e.g. a
BravadoTimeoutError) or, if a server response was received, on any data pertaining to that response, like the
HTTP status code. Subclasses of HTTPError have a response attribute that provides access to that data.

def pet_status_fallback(exc):
if isinstance(exc, BravadoTimeoutError):

Backend is slow, return last cached response
return pet_status_cache

Some server issue, let's not show any pets
return []

petstore = SwaggerClient.from_url(
'http://petstore.swagger.io/v2/swagger.json',
The petstore result for this call is not spec compliant...
config={'validate_responses': False},

)
response = petstore.pet.findPetsByStatus(status=['available']).response(

timeout=0.5,
fallback_result=pet_status_fallback,

)

if not response.metadata.is_fallback_result:
pet_status_cache = response.result

4.7.2 Customizing which error types to handle

By default, the fallback result will be used either when the server doesn’t send the response in time or when
it returns a server error (i.e. a result with a HTTP 5XX status code). To override this behavior, specify the
exceptions_to_catch argument to HttpFuture.response().

The default is defined in bravado.http_future.FALLBACK_EXCEPTIONS. See bravado.exception for
a list of possible exception types.

16 Chapter 4. Advanced Usage

bravado

4.7.3 Models and fallback results

But what if you’re using models (the default) and the endpoint you’re calling returns one? You’ll have to return one as
well from your fallback_result function to stay compatible with the rest of your code:

petstore = SwaggerClient.from_url('http://petstore.swagger.io/v2/swagger.json')
response = petstore.pet.getPetById(petId=101).response(

timeout=0.5,
fallback_result=petstore.get_model('Pet')(name='No Pet found', photoUrls=[]),

)

Two things to note here: first, use SwaggerClient.get_model() to get the model class for a model name.
Second, since name and photoUrls are required fields for this model, we probably should not leave them empty (if
we do they’d still be accessible, but the value would be None). It’s up to you how you decide to deal with this case.

BravadoResponseMetadata.is_fallback_result will be True if a fallback result has been returned by
the call to HttpFuture.response().

4.7.4 Testing fallback results

You can trigger returning fallback results for testing purposes. Just set the option force_fallback_result to
True in the request configuration (see Per-request Configuration). In this case a ForcedFallbackResultError
exception will be passed to your fallback result callback, so make sure you handle it properly.

4.8 Custom response metadata

Sometimes, there’s additional metadata in the response that you’d like to make available easily. This case arises most
often if you’re using bravado to talk to internal services. Maybe you have special HTTP headers that indicate whether
a circuit breaker was triggered? bravado allows you to customize the metadata and provide custom attributes and
methods.

In your code, create a class that subclasses bravado.response.BravadoResponseMetadata. In the im-
plementation of your properties, use BravadoResponseMetadata.headers to access response headers, or
BravadoResponseMetadata.incoming_response to access any other part of the HTTP response.

If, for some reason, you need your own __init__ method, make sure that your signature accepts any positional
and keyword argument, and that you call the base method with these arguments from your own implementation. That
way, your class will remain compatible with the base class even if new arguments get added to the __init__ method.
Example minimal implementation:

class MyResponseMetadata(ResponseMetadata):
def __init__(self, *args, **kwargs):

super(MyResponseMetadata, self).__init__(*args, **kwargs)

While developing custom BravadoResponseMetadata classes we recommend to avoid, if possible, the usage of
attributes for data that’s expensive to compute. Since the object will be created for every response, implementing these
fields as properties makes sure the evaluation is only done if the field is accessed.

4.8. Custom response metadata 17

bravado

18 Chapter 4. Advanced Usage

CHAPTER 5

Testing code that uses bravado

Writing tests is crucial in making sure your code works and behaves as expected. bravado ships with two classes that
will help you create robust unit tests to verify the correctness of your code. We’ll be using the excellent pytest library
in this example.

First of all, let’s define the code we’d like to test:

from itertools import chain

from bravado.client import SwaggerClient

def get_available_pet_photos():
petstore = SwaggerClient.from_url(

'http://petstore.swagger.io/v2/swagger.json',
)
pets = petstore.pet.findPetsByStatus(status=['available']).response(

timeout=0.5,
fallback_result=lambda e: [],

).result

return chain.from_iterable(pet.photoUrls for pet in pets)

First of all, in order to make sure your code doesn’t do any network requests, you need to mock out the bravado client:

import mock
import pytest

from bravado.client import SwaggerClient

@pytest.fixture
def mock_client():

mock_client = mock.Mock(name='mock SwaggerClient')
with mock.patch.object(SwaggerClient, 'from_url', return_value=mock_client):

yield mock_client

19

https://pytest.org/

bravado

Now we can mock out that call to findPetsByStatus by using the bravado.testing.response_mocks.
BravadoResponseMock class:

import mock

from bravado.testing.response_mocks import BravadoResponseMock

from mypackage import get_available_pet_photos

def test_get_available_pet_photos(mock_client):
mock_pets = [

mock.Mock(
photoUrls=['https://example.com/image.png'],

),
mock.Mock(

photoUrls=[
'https://example.com/image2.png',
'https://example.com/image3.png',

],
),

]

mock_client.pet.findPetsByStatus.return_value.response = BravadoResponseMock(
result=mock_pets,

)

pet_photos = get_available_pet_photos()

assert list(pet_photos) == [
'https://example.com/image.png',
'https://example.com/image2.png',
'https://example.com/image3.png',

]

Note that it’s your responsibility to ensure that what you set as result for BravadoResponseMock is sufficiently
similar to what bravado would return in production. We’ve used a Mock class here; another option is to define
namedtuples that correspond to your Swagger spec objects. This gives you even greater confidence in the correctness
of your code since access to undefined fields will result in an error.

5.1 Testing degraded responses

Use FallbackResultBravadoResponseMock to test fallback results. It works similarly, but you don’t have to
pass the result to the constructor, since your fallback result callback will determine the result. Let’s add another test to
verify our fallback result code path works properly:

from bravado.testing.response_mocks import FallbackResultBravadoResponseMock

from example import get_available_pet_photos

def test_get_available_pet_photos_fallback_result(mock_client):
mock_client.pet.findPetsByStatus.return_value\

.response = FallbackResultBravadoResponseMock()

pet_photos = get_available_pet_photos()

assert list(pet_photos) == []

20 Chapter 5. Testing code that uses bravado

bravado

Note that you can pass in a custom exception instance to FallbackResultBravadoResponseMock if you need
to trigger specific exception handling in your fallback result callback.

5.2 Setting custom response metadata

Both BravadoResponseMock as well as FallbackResultBravadoResponseMock accept an optional
metadata argument. Just pass in an instance of BravadoResponseMetadata that you’d like to be used. A
default one will be provided otherwise.

5.2. Setting custom response metadata 21

bravado

22 Chapter 5. Testing code that uses bravado

CHAPTER 6

API reference

6.1 bravado Package

6.1.1 bravado Package

6.1.2 client Module

6.1.3 config Module

6.1.4 requests_client Module

6.1.5 fido_client Module

6.1.6 http_future Module

6.1.7 response Module

6.1.8 exception Module

6.1.9 testing Module

23

bravado

24 Chapter 6. API reference

CHAPTER 7

Changelog

7.1 10.4.3 (2019-11-04)

• Some type annotation fixes and improvements, in particular for the response_adapter argument to HttpFuture
- PR #436

7.2 10.4.2 (2019-10-16)

• Show the response text when an unexpected 5xx response is returned. This fixes a regression introduced in PR
#32 - PR #425. Thanks Kevin Coleman for your contribution!

• Allow custom future and response adapter classes in both RequestsClient and FidoClient - PR #430,
#431. Thanks Andrii Stepaniuk for your contribution!

• Fix HttpErrorType type annotations - PR #433

7.3 10.4.1 (2019-05-08)

• Fix and re-enable integration tests on Windows - PR #417

7.4 10.4.0 (2019-05-07)

• Ensure that bravado supports Windows platform - PR #415

• Ensure that responses with application/.* content type returns raw binary data - PR # 414. Thanks Greg Ruane
for your contribution!

25

bravado

7.5 10.3.2 (2019-03-25)

• Do not warn about conflicting timeouts in requests HTTP client if only one was specified - PR #411. Thanks
Pokey Rule for your contribution!

• Fix bug in bravado.fido_client.FidoResponseAdapter, it was not returning a unicode string for
text - PR #412

7.6 10.3.1 (2019-02-27)

• Fix bravado.response.BravadoResponseMetadata.is_fallback_result, it was always
True in 10.3.0 - Issue #409, PR #410

• bravado.response.BravadoResponseMetadata.handled_exception_info is None again if
no exception was handled - PR #410

• bravado.testing.response_mocks is now type-annotated - PR #410

7.7 10.3.0 (2019-02-20)

• bravado is now fully type-annotated - PR #403

• Add ability to cancel a HttpFuture. Third-party HTTP clients will need to implement cancel on their
bravado.http_future.FutureAdapter class to support this - PR #406

• The static method from_config_dict of bravado.config.BravadoConfig was removed due to
compatibility issues with Python 3.5.0. This method was meant for internal use only; if you do happen to call it
please switch to bravado.config.bravado_config_from_config_dict() instead. - PR #407

7.8 10.2.2 (2019-01-03)

• Fix issue with default (requests) HTTP client if HTTP_PROXY environment variable is set - Issue #401, PR
#402. Thanks Lourens Veen for the initial report!

7.9 10.2.1 (2018-11-16)

• Reraise network errors when unmarshalling - PR #397

7.10 10.2.0 (2018-10-19)

• Support customizing or disabling SSL/TLS validation for the default HTTP client - Issues #278, #311, PR #392

• Use the fallback result in case of connection errors as well - PR #381

26 Chapter 7. Changelog

bravado

7.11 10.1.0 (2018-06-26)

• Add support for non-callable fallback results, stabilize the response API - PR #376

• Add unified connection error handling support, introduce bravado.exception.
BravadoConnectionError - PR #377

• Support per-request API key header overwriting - PR #374. Thanks Yuliya Bagriy for your contribution!

• Extract integration testing tools to bravado.testing.integration_test module - PR #378

7.12 10.0.1 (2018-06-20)

• Add helper classes (in bravado.testing.response_mocks) for unit testing code using bravado - PR
#375

7.13 10.0.0 (2018-06-15)

• Re-add ability to force returning fallback results - PR #372. Per-request configuration is now handled by the new
bravado.config.RequestConfig class. This change requires an updated version of bravado-asyncio in
case you’re using that HTTP client.

7.14 9.3.2 (2018-06-15)

• Revert ability to force returning fallback results which was introduced in 9.3.1, since it contains backwards-
incompatible changes that break third-party HTTP clients like bravado-asyncio.

7.15 9.3.1 (2018-06-14)

• Add ability to force returning fallback results - PR #372

7.16 9.3.0 (2018-06-05)

• Introduce the HTTPFuture.response API as well as support for returning a fallback result. - PR #365, #366,
#367, #368

NOTE: Most of this API is not documented yet and is considered experimental; we’re working on stabilizing it
and providing developer documentation.

7.17 9.2.2 (2017-12-19)

• Fix msgpack import issue - PR #341. Thanks Jesse Myers for your contribution!

7.11. 10.1.0 (2018-06-26) 27

bravado

7.18 9.2.1 (2017-12-07)

• The timeout exception for the requests client should inherit from requests.exceptions.ReadTimeout
instead of requests.exceptions.Timeout - PR #337

7.19 9.2.0 (2017-11-10)

• Support msgpack as wire format for response data - PR #323, 328, 330, 331

• Allow client to access resources for tags which are not valid Python identifier names, by adding the
SwaggerClient.get_resource method. For example, client.get_resource('My Pets').
list_pets() - PR #320. Thanks Craig Blaszczyk for your contribution!

• Unify timeout exception classes. You can now simply catch bravado.exception.
BravadoTimeoutError (or builtins.TimeoutError if you’re using Python 3.3+) - PR #321

7.20 9.1.1 (2017-10-10)

• Allow users to pass the tcp_nodelay request parameter to FidoClient requests - PR #319

7.21 9.1.0 (2017-08-02)

• Make sure HTTP header names and values are unicode strings when using the fido HTTP client. NOTE: this is a
potentially backwards incompatible change if you’re using the fido HTTP client and are working with response
headers. It’s also highly advised to not upgrade to bravado-core 4.8.0+ if you’re using fido unless you’re also
upgrading to a bravado version that contains this change.

7.22 9.0.7 (2017-07-05)

• Require fido version 4.2.1 so we stay compatible to code catching crochet.TimeoutError

7.23 9.0.6 (2017-06-28)

• Don’t mangle headers with bytestring values on Python 3

7.24 9.0.5 (2017-06-23)

• Make sure headers passed in for fetching specs are converted to str as well

7.25 9.0.4 (2017-06-22)

• Fix regression when passing swagger parameters of type header in _request_options introduced by PR
#288

28 Chapter 7. Changelog

bravado

7.26 9.0.3 (2017-06-21)

• When using the fido HTTP client and passing a timeout to result(), make sure we throw a fido HTTPTime-
outError instead of a crochet TimeoutError when hitting the timeout.

7.27 9.0.2 (2017-06-12)

• _requests_options headers are casted to string to support newer version of requests library.

7.28 9.0.1 (2017-06-09)

• Convert http method to str while constructing the request to fix an issue with file uploads when using requests
library versions before 2.8.

7.29 9.0.0 (2017-06-06)

• Add API key authentication via header to RequestsClient.

• Fido client is now an optional dependency. NOTE: if you intend to use bravado with the fido client you need to
install bravado with fido extras (pip install bravado[fido])

7.30 8.4.0 (2016-09-27)

• Remove support for Python 2.6, fixing a build failure.

• Switch from Python 3.4 to Python 3.5 for tests.

7.31 8.3.0 (2016-06-03)

• Bravado using Fido 3.2.0 python 3 ready

7.32 8.2.0 (2016-04-29)

• Bravado compliant to Fido 3.0.0

• Dropped use of concurrent futures in favor of crochet EventualResult

• Workaround for bypassing a unicode bug in python requests < 2.8.1

7.33 8.1.2 (2016-04-18)

• Don’t unnecessarily constrain the version of twisted when not using python 2.6

7.26. 9.0.3 (2017-06-21) 29

bravado

7.34 8.1.1 (2016-04-13)

• Removed logic to build multipart forms. Using python ‘requests’ instead to build the entire http request.

7.35 8.1.0 (2016-04-04)

• Support for YAML Swagger specs - PR #198

• Remove pytest-mock dependency from requirements-dev.txt. No longer used and it was breaking the build.

• Requires bravado-core >= 4.2.2

• Fix unit test for default values getting sent in the request

7.36 8.0.1 (2015-12-02)

• Require twisted < 15.5.0 since Python 2.6 support was dropped

7.37 8.0.0 (2015-11-25)

• Support for recursive $refs

• Support for remote $refs e.g. Swagger 2.0 specs that span multiple json files

• Requires bravado-core 4.0.0 which is not backwards compatible (See its CHANGELOG)

• Transitively requires swagger-spec-validator 2.0.2 which is not backwards compatible (See its CHANGELOG)

7.38 7.0.0 (2015-10-23)

• Support per-request response_callbacks to enable SwaggerClient decorators to instrument an
IncomingResponse post-receive. This is a non-backwards compatible change iff you have implemented a
custom HttpClient. Consult the changes in signature to HttpClient.request() and HttpFuture’s
constructor.

• Config option also_return_response is supported on a per-request basis.

7.39 6.1.1 (2015-10-19)

• Fix IncomingResponse subclasses to provide access to the http headers.

• Requires bravado-core >= 3.1.0

7.40 6.1.0 (2015-10-19)

• Clients can now access the HTTP response from a service call to access things like headers and status code. See
Advanced Usage

30 Chapter 7. Changelog

http://bravado-core.readthedocs.org/en/latest/changelog.html
http://swagger-spec-validator.readthedocs.org/en/latest/changelog.html
configuration.html#per-request-configuration
advanced.html#getting-access-to-the-http-response

bravado

7.41 6.0.0 (2015-10-12)

• User-defined formats are no longer global. The registration mechanism has changed and is now done via con-
figuration. See Configuration

7.42 5.0.0 (2015-08-27)

• Update ResourceDecorator to return an operation as a CallableOperation instead of a function wrapper (for the
docstring). This allows further decoration of the ResourceDecorator.

7.43 4.0.0 (2015-08-10)

• Consistent bravado.exception.HTTPError now thrown from both Fido and Requests http clients.

• HTTPError refactored to contain an optional detailed message and Swagger response result.

7.44 3.0.0 (2015-08-03)

• Support passing in connect_timeout and timeout via _request_options to the Fido and Requests clients

• Timeout in HTTPFuture now defaults to None (wait indefinitely) instead of 5s. You should make sure any calls
to http_future.result(..) without a timeout are updated accordingly.

7.45 2.1.0 (2015-07-20)

• Add warning for deprecated operations

7.46 2.0.0 (2015-07-13)

• Assume responsibility for http invocation (used to be in bravado-core)

7.47 1.1.0 (2015-07-06)

• Made bravado compatible with Py34

7.48 1.0.0 (2015-06-26)

• Fixed petstore demo link

• Pick up bug fixes from bravado-core 1.1.0

7.41. 6.0.0 (2015-10-12) 31

configuration.html

bravado

7.49 1.0.0-rc2 (2015-06-01)

• Renamed ResponseLike to IncomingResponse to match bravado-core

7.50 1.0.0-rc1 (2015-05-13)

• Initial version - large refactoring/rewrite of swagger-py 0.7.5 to support Swagger 2.0

32 Chapter 7. Changelog

CHAPTER 8

Indices and tables

• genindex

• modindex

33

	Quickstart
	Configuration
	Making requests with bravado
	Advanced Usage
	Testing code that uses bravado
	API reference
	Changelog
	Indices and tables

